Fast multi-scale edge-detection in medical ultrasound signals

نویسنده

  • Preben Gråberg Nes
چکیده

In this article we suggest a fast multi-scale edge-detection scheme for medical ultrasound signals. The edge-detector is based on well-known properties of the continuous wavelet transform. To achieve both good localization of edges and detect only significant edges, we study the maxima-lines of the wavelet transform. One can obtain the maxima-lines between two scales by computing the wavelet transform at several intermediate scales. To reduce computational effort and time we suggest a timescale filtering procedure which uses only few scales to connect modulus-maxima across timescale plane. The design of this procedure is based on a study of maxima-lines corresponding to edges typical for medical ultrasound signals. This study allows us to construct an algorithm for medical ultrasound signals which meets the demand for speed, but not on expense of reliability. The edge-detection algorithm has been applied to a large class of medical ultrasound signals including tumour-, liver-and artery-images. Our results show that the proposed algorithm effectively detects major features in such signals, including edges with low contrast.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing magnetic signals in unexploded ordnances (UXO) detection based on edge-preserved stable downward continuation method

This paper describes an efficient edge-preserved regularization algorithm for downward continuation of magnetic data in detection of unexploded ordnance (UXO). The magnetic anomalies arising from multi-source UXO can overlap at a height over the ground surface, while causative sources may not be readily separated due to low level of signal-to-noise ratio of the observed data. To effectively the...

متن کامل

Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals

Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool  between humans and machines. Most brain-computer interface (BCI) systems use the P300 component,  which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for  detection of P300.  Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

Epileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties

Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...

متن کامل

A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing

دوره 92  شماره 

صفحات  -

تاریخ انتشار 2012